Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4363-4370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299730

RESUMO

BACKGROUND: The two major storage proteins of soymilk are the globulins 7S and 11S. Freeze-thaw fractionation is a simple method for separating these proteins in raw soymilk. In this study, we assessed the freeze-thaw fractionation ability of raw soymilk under various pH (4.3-11.6) conditions and added salt (sodium chloride) concentrations (0.00-0.67 mol L-1). RESULTS: We successfully achieved fractionation within a pH range of 5.8-6.7 and when the salt concentration was 0.22 mol L-1 or lower. Analysis of particle size distribution and microscopic examination of soymilk revealed no direct correlation between particle size and freeze-thaw fractionation ability. Interestingly, it was confirmed that the ranges of zeta potential values associated with successful freeze-thaw fractionation in raw soymilk remained consistent across different pH and salt concentration conditions. These ranges were between -23 and -28 mV at pH levels ranging from 5.8 to 6.7 and between -18 and -29 mV at added salt concentrations ranging from 0 to 0.22 mol L-1. CONCLUSION: The pH and salt concentration in raw soymilk markedly influence the freeze-thaw fractionation process. We confirmed that the range of zeta potential values where fractionation was possible remained consistent under various pH and salt concentration conditions. These findings suggest that the zeta potential value might serve as an indicator for evaluating the freeze-thaw fractionation ability of raw soymilk. © 2024 Society of Chemical Industry.


Assuntos
Globulinas , Leite de Soja , Proteínas de Soja/metabolismo , Cloreto de Sódio , Leite de Soja/metabolismo , Globulinas/metabolismo , Concentração de Íons de Hidrogênio
2.
J Sci Food Agric ; 103(8): 3822-3829, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36273264

RESUMO

BACKGROUND: Soymilk is utilized not only as a beverage but also as an alternative to bovine milk, including products such as yoghurt and cream. Evaporated soymilk is expected to be utilized as condensed milk. Raw and heated soymilk samples prepared in our laboratory were evaporated and then subjected to viscosity measurement. The soymilk samples were made from two different varieties: Fukuyutaka, which contains 7S and 11S globulin proteins; and an 11S-lacking soybean (Nanahomare). RESULTS: Raw Fukuyutaka soymilk had a lower viscosity and could be concentrated to a solids content of over 300 g kg-1 compared to heated soymilk (around 250 g kg-1 ), but the viscosity changes of Nanahomare soymilk showed an opposite trend. Only 7S globulin was denatured during evaporation at 75 °C and likely affected the interaction between proteins and oil bodies. This tendency was remarkable in the Nanahomare soymilk. The strange viscosity change behavior of evaporated Nanahomare soymilk, number of protein particles, intrinsic fluorescence and flow behavior suggest that thermally denatured 7S globulin accelerates the interactions between oil bodies, whereas 11S globulin, which is probably in its native state, suppresses the acceleration by denatured 7S globulin. CONCLUSION: Raw soymilk containing native globulins shows a slower increase in viscosity during evaporation. However, denatured 7S globulin accelerates the increase in viscosity during evaporation through interactions between oil bodies. The effect of the denatured state of individual proteins on interactions is expected to be useful in understanding the interaction between proteins and in controlling their properties and functions. © 2022 Society of Chemical Industry.


Assuntos
Leite de Soja , Leite de Soja/química , Sementes/química , Globulinas/química , Viscosidade , Volatilização , Ultracentrifugação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...